Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722713

RESUMO

Mixed-donor ligands, such as those containing a combination of O/N or O/S, have been studied extensively for the selective extraction of trivalent actinides, especially Am3+ and Cm3+, from lanthanides during the recycling of used nuclear fuel. Oxygen/sulfur donor ligand combinations also result from the hydrolytic and/or radiolytic degradation of dithiophosphates, such as the Cyanex class of extractants, which are initially converted to monothiophosphates. To understand potential differences between the binding of such degraded ligands to Nd3+ and Am3+, the monothiophosphate complexes [M(OPS(OEt)2)5(H2O)2]2- (M3+ = Nd3+, Am3+) were prepared and characterized by single-crystal X-ray diffraction and optical spectroscopy and studied as a function of pressure up to ca. 14 GPa using diamond-anvil techniques. Although Nd3+ and Am3+ have nearly identical eight-coordinated ionic radii, these structures reveal that while the M-O bond distances in these complexes are almost equal, the M-S distances are statistically different. Moreover, for [Nd(OPS(OEt)2)5(H2O)2]2-, the hypersensitive 4I9/2 → 4G5/2 transition shifts as a function of pressure by -11 cm-1/GPa. Whereas for [Am(OPS(OEt)2)5(H2O)2]2-, the 7F0 → 7F6 transition shows a slightly stronger pressure dependence with a shift of -13 cm-1/GPa and also exhibits broadening of the 5f → 5f transitions at high pressures. These data likely indicate an increased involvement of the 5f orbitals in bonding with Am3+ relative to that of Nd3+ in these complexes.

2.
J Am Chem Soc ; 146(11): 7822-7830, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456811

RESUMO

Understanding the effects of pressure on actinide compounds is an integral part of safe nuclear waste storage in deep geologic repositories and provides a means of systematically altering the structure and properties. However, detailing how the effects of pressure evolve across the actinide series in the later elements is not typically undertaken because of the challenges of conducting research on these unstable isotopes. Here, a family of bimetallic actinide complexes, [(An(pmtz)2(H2O)3)2(µ-pmtz)]2(pmtz)2·nH2O (An3+ = Cm3+, Bk3+, and Cf3+, pmtz- = 5-(pyrimidyl)tetrazolate; Cm1, Bk1, and Cf1), are reported and represent the first structurally characterized bimetallic berkelium and californium compounds. The pressure response as determined from UV-vis-NIR transitions varies for Cm1, Bk1, and Cf1. The 5f → 5f transitions in Cm1 are notably more sensitive to pressure compared to those in Bk1 and Cf1 and show substantial bathochromic shifting of several 5f → 5f transitions. In the case of Bk1, an ingrowth of a metal-to-ligand charge-transfer transition occurs at elevated pressures because of the accessible Bk3+/Bk4+ couple. For Cf1, no substantial transition shifting or emergence of MLCT transitions is observed at elevated pressures because of the prohibitive energetics of the Cf3+/Cf4+ couple and reduced sensitivity of the 5f → 5f transitions to the local coordination environment because of the more contracted 5f shell versus Cm3+ and Bk3+.

3.
Inorg Chem ; 63(2): 1266-1273, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38165641

RESUMO

The salt metathesis reaction of Na(pmtz)·H2O [pmtz- = 5-(pyrimidyl)tetrazolate] and PuBr3·nH2O in an aqueous media leads to the formation of the mononuclear compound [Pu(pmtz)3(H2O)3]·(3 + n) H2O (Pu1, n = ∼8) that is isotypic with the lanthanide compounds [Ln(pmtz)3(H2O)3]·(3 + n) H2O (Ln = Ce-Nd). Dissolution and recrystallization of Pu1 in water yields the dinuclear compound {[Pu(pmtz)2(H2O)3]2(µ-pmtz)}2(pmtz)2·14H2O (Pu2), which is isotypic with the lanthanide compounds {[Ln(pmtz)2(H2O)3]2(µ-pmtz)}2(pmtz)2·14H2O (Ln = Nd and Sm). Like their nine-coordinate ionic radii, the M-O and M-N bond lengths in Pu1/Pu2 and Nd1/Nd2, respectively, are within error of one another. The Laporte-forbidden 4f → 4f and 5f → 5f transitions are also assigned in the UV-vis-NIR spectra for these f-element tetrazolate coordination compounds.

4.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 11): 1079-1082, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37936856

RESUMO

The crystal structure of the title compound, C15H20N2 or DippIm, is reported. At 106 (2) K, the mol-ecule has monoclinic P21/c symmetry with four mol-ecules in the unit cell. The imidazole ring is rotated 80.7 (1)° relative to the phenyl ring. Inter-molecular stabilization primarily results from close contacts between the N atom at the 3-position on the imidazole ring and the C-H bond at the 4-position on the neighboring DippIm, with ar-yl-aryl distances outside of the accepted distance of 5 Šfor π-stacking.

5.
Inorg Chem ; 61(44): 17730-17737, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36283067

RESUMO

Two neptunium(III) mellitates, 237Np2(mell)(H2O)9·1.5H2O (Np-1α) and 237Np2(mell)(H2O)8·2H2O (Np-1ß), have been synthesized from 237NpCl4(dme)2 by reduction with KC8 and subsequent reaction with an aqueous solution of mellitic acid (H6mell). Characterization by single-crystal X-ray crystallography and UV-vis-NIR spectroscopy confirms that the neptunium is in its +3 oxidation state and both polymorphs are isostructural to the previously reported plutonium mellitates. Of the two morphologies, Np-1α is indefinitely stable in air, while Np-1ß slowly oxidizes over several months. This is due to the change in the energy of the metal-ligand charge-transfer absorption exhibited by these compounds attributed to differing numbers of carboxylate bonds to Np(III), where in Np-1ß the energy is low enough to result in spontaneous oxidation.

6.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 9): 905-911, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36072516

RESUMO

The crystal structures of ligand precursor bis-(imidazolium) salts 1,1'-methyl-enebis(3-tert-butyl-imidazolium) dibromide monohydrate, C15H26N4 +·2Br-·H2O or [ tBuNHC2Me][Br]2·H2O, 1,1'-(ethane-1,2-di-yl)bis-(3-tert-butyl-imidazolium) dibromide dihydrate, C16H28N4 +·2Br-·2H2O or [ tBuNHC2Et][Br]2·2H2O, 1,1'-methyl-enebis[3-(2,4,6-tri-methyl-phen-yl)imidazolium] dibromide dihydrate, C25H30N4 2+·2Br-·2H2O or [MesNHC2Me][Br]2·2H2O, and 1,1'-(ethane-1,2-di-yl)bis-[3-(2,4,6-tri-methyl-phen-yl)imidazolium] dibromide tetra-hydrate, C26H32N4 2+·2Br-·4H2O or [MesNHC2Et][Br]2·4H2O, are reported. At 293 K, [ tBuNHC2Me][Br]2·H2O crystallizes in the P21/c space group, while [ tBuNHC2Et][Br]2·2H2O crystallizes in the P21/n space group at 100 K. At 112 K, [MesNHC2Me][Br]2·2H2O crystallizes in the ortho-rhom-bic space group Pccn while [MesNHC2Et][Br]2·4H2O crystallizes in the P21/c space group at 100 K. Bond distances and angles within the imidazolium rings are generally comparable among the four structures. All four bis-(imidazolium) salts co-crystallize with one to four mol-ecules of water.

7.
Acta Crystallogr C Struct Chem ; 78(Pt 4): 231-239, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380126

RESUMO

The structure of a trinuclear zinc complex, hexakis(µ2-2-anilinobenzoato)diaquatrizinc(II), [Zn2(C13H10NO2)6(H2O)2] or (NPA)6Zn3(H2O)2 (NPA is 2-anilinobenzoate or N-phenylanthranilate), is reported. The complex crystallizes in the triclinic space group P-1 and the central ZnII atom is located on an inversion center. The NPA ligand is found to coordinate via the carboxylate O atoms with unique C-O bond lengths that support an unequal distribution of resonance over the carboxylate fragment. The axial H2O ligands form hydrogen bonds with neighboring molecules that stabilize the supramolecular system in rigid straight chains, with an angle of 180° along the c axis. π stacking is the primary stabilization along the a and b axes, resulting in a highly ordered supramolecular structure. Docking studies show that this unique supramolecular structure of a trinuclear zinc complex has potential for binding to the main protease (Mpro) in SARS-CoV-2 in a different location from Remdesivir, but with a similar binding strength.


Assuntos
COVID-19 , Zinco , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Ligantes , SARS-CoV-2 , Zinco/química , ortoaminobenzoatos
8.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 3): 244-250, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371549

RESUMO

Two cis-dioxomolybdenum complexes based on salan ligands with different backbones are reported. The first complex, dioxido{2,2'-[l,2-phenyl-enebis(imino-methyl-ene)]bis-(phenolato)}molybdenum(VI) di-methyl-formamide disolvate, [Mo(C20H18N2O2)O2]·2C3H7NO (PhLMoO2, 1b), features a phenyl backbone, while the second complex, (6,6'-{[(cyclo-hexane-1,2-di-yl)bis(aza-nedi-yl)]bis-(methyl-ene)}bis-(2,4-di-tert-butyl-phenolato))dioxidomolybdenum(VI) methanol disolvate, [Mo(C36H56N2O2)O2]·2CH3OH (CyLMoO2, 2b), is based on a cyclo-hexyl backbone. These complexes crystallized as solvated species, 1b·2DMF and 2b·2MeOH. The salan ligands PhLH2 (1a) and CyLH2 (2a) coordinate to the molybdenum center in these complexes 1b and 2b in a κ2 N,κ2 O fashion, forming a distorted octa-hedral geometry. The Mo-N and Mo-O distances are 2.3475 (16) and 1.9567 (16) Å, respectively, in 1b while the corresponding measurements are Mo-N = 2.3412 (12) Å, and Mo-O = 1.9428 (10) Šfor 2b. A key geometrical feature is that the N-Mo-N angle of 72.40 (4)° in CyLMoO2 is slightly less than that of the PhLMoO2 angle of 75.18 (6)°, which is attributed to the flexibility of the cyclo-hexane ring between the nitro-gen as compared to the rigid phenyl ring in the PhLMoO2.

9.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 5): 736-741, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431943

RESUMO

The title compound, bis-(1,2-diphenyl-2-sulfanyl-idene-ethane-thiol-ato-κ2 S,S')(1,3,5-tri-aza-7-phosphaadamantane-κP)cobalt(II) dichloromethane hemisolvate, [Co(pdt)2(PTA)]·0.5C2H4Cl2 or [Co(C14H10S2)2(C6H12N3P)]·0.5C2H4Cl2, contains two phenyl-dithiol-ene (pdt) ligands and a 1,3,5-tri-aza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-di-chloro-ethane mol-ecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supra-molecular network is consolidated by hydrogen-bonding inter-actions primarily with nitro-gen, sulfur and chlorine atoms, as well as parallel displaced π-stacking of the aryl rings. The UV-vis, IR, and CV data are also consistent with monoanionic di-thiol-ene ligands and an overall CoII oxidation state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...